Wednesday 20 June 2018

DIGITAL INFINITE-IMPULSE RESPONSE (IIR) FILTERS-III


EDITOR: B. SOMANATHAN NAIR


Example 1: Obtain the digital filter-transfer function given, given

                                                       H(s) = 1/(s + a) (s + b)    (1)
                                                        
Solution: Equation (1) can be written in partial-fraction form as

                             H(s) = [A/(s + a)] + [B/(s + b)]  (2)                                         

To find A and B, rewrite (2) in the form

         H(s) = [A(s + b) + B(s + a)]/(s + a) (s + b)    (3)

Comparing (1) and (3) and equating the coefficients of s, we get

                                                            A + B  = 0   (4)
Hence
                                                                        A = ‒B (5)

Similarly, equating constants yields
               
                                                            Ab + aB = 1  (6)
                                                           
Substituting for B from (5) into (6), we find

                                                            A = 1/(ba)  (7)
And

                                                            B = 1/(a b)   (8)

Using the values of A and B, we can express (2) as

               H(s) = 1/(ba) (s + a) + 1/(a b)(s + b)]  (9)                                                          

Taking the inverse Laplace transform of (9), we get

                                                                               

                        h(t) = eat/(b a) ‒ ebt/(b a)   (10)

The z transform of (10) is given by

                          H(z) =[1/(b a)(1 ‒ eaz ‒1)] ‒ [1/(b a)(1 ‒ ebz ‒1)]   (11)

Let us now assume that a = 0.3 and b = 0.5. Then (11) gives
                                                                                               
  H(z) =[5/(1 ‒ 0.741z ‒1)] ‒ [5/(1 ‒ 0.607z ‒1)]  

                        = H­1(z) + H­2(z)  (12)                                

where
                                             H­1(z) = 5/(1 ‒ 0.741z ‒1)  (13)
and
         H­2(z) = ­‒5/(1 ‒ 0.607z ‒1)  (14)
Equation (13) may be expanded as
                                        H­1(z) = Y1(z)/ X1(z) = 5/(1 ‒ 0.741z ‒1)  (15)
From which we get
                                                Y1(z) (1 ‒ 0.741z ‒1) = 5 X1(z)  (16)
Taking inverse z transform of (16) and rearrangement yields
                       
y1(n) = 0.741y1(n ‒ 1) + 5x1(n)  (17)

In a similar manner, we obtain

                                    y2(n) = 0.607y2(n ‒ 1) ‒ 5x2(n) (18)

Equations (17) and (18) can be implemented as shown in Figs. 1 and 2. Figure 1 shows the block schematics of parallel form of implementation in general and Fig. 2 shows the actual implementation.









No comments:

Post a Comment

DISCRETE SIGNAL OPERATIONS

EDITOR: B. SOMANATHAN NAIR 1. INTRODUCTION In the previous two blogs, we had discussed operations of scaling and shifting on conti...